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A generalized vortex ring model
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A conventional laminar vortex ring model is generalized by assuming that the time
dependence of the vortex ring thickness � is given by the relation � = a tb, where a

is a positive number and 1/4 � b � 1/2. In the case in which a =
√

2ν, where ν

is the laminar kinematic viscosity, and b = 1/2, the predictions of the generalized
model are identical with the predictions of the conventional laminar model. In the
case of b = 1/4 some of its predictions are similar to the turbulent vortex ring
models, assuming that the time-dependent effective turbulent viscosity ν∗ is equal to
��′. This generalization is performed both in the case of a fixed vortex ring radius R0

and increasing vortex ring radius. In the latter case, the so-called second Saffman’s
formula is modified. In the case of fixed R0, the predicted vorticity distribution for
short times shows a close agreement with a Gaussian form for all b and compares
favourably with available experimental data. The time evolution of the location of
the region of maximal vorticity and the region in which the velocity of the fluid in the
frame of reference moving with the vortex ring centroid is equal to zero is analysed.
It is noted that the locations of both regions depend upon b, the latter region being
always further away from the vortex axis than the first one. It is shown that the axial
velocities of the fluid in the first region are always greater than the axial velocities
in the second region. Both velocities depend strongly upon b. Although the radial
component of velocity in both of these regions is equal to zero, the location of both of
these regions changes with time. This leads to the introduction of an effective radial
velocity component; the latter case depends upon b. The predictions of the model are
compared with the results of experimental measurements of vortex ring parameters
reported in the literature.

1. Introduction
Vortex rings have been widely observed as persistent slowly decaying structures

(Saffman 1992). These structures provide a relatively simple flow field, accessible
to experimental, numerical and theoretical studies. The importance of vortex rings
was emphasized by Saffman (1992) who wrote, ‘This commonly known phenomenon
exemplifies the whole range of problems of vortex motion’. The properties of the
vortex rings have been studied for over a century both theoretically and experimentally
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(Helmholtz 1858; Lamb 1932; Phillips 1956; Norbury 1973; Kambe & Oshima 1975;
Saffman 1992; Shariff & Leonard 1992; Lim & Nickels 1995). Recent developments
on the modelling side include Stanaway, Cantwell & Spalart (1988), Rott & Cantwell
(1993a, b), Mohseni & Gharib (1998), Kaplanski & Rudi (1999, 2005), Fukumoto &
Moffatt (2000), Shusser & Gharib (2000), Mohseni (2001, 2006), Linden & Turner
(2001) and Fukumoto & Kaplanski (2008).

Classical vortex rings are generated by a moving piston, pushing a liquid column
of length L through an orifice or nozzle of diameter D. The flow separates at the
edge of the orifice, and a cylindrical vortex sheet forms and rolls up into a vortex ring
structure. This structure can be laminar or turbulent depending upon the method of
generation and the ambient conditions. Also, the mushroomlike patterns resembling
classical vortex ring motion are often observed in nature and industry, including
gasoline engines. Such structures can be formed in a fluid when localized forces are
applied to the fluid during a short period of time (e.g. in the injection of gasoline in
modern engines). In this case, jets with vortex ring structures at the spray periphery
can be produced. There is ‘some’ similarity between the mathematical tools used to
describe these structures and those of classical vortex rings.

Saffman (1970) derived an explicit formula for the translational velocity (axial
velocity of the centroid as discussed later) of thin-cored laminar vortex rings of
radius R0 in the form

Vx =
Γ0

4πR0

[
ln

(
8R0√
4νt

)
− 0.558 + O

(√
νt

R0

ln

(
νt

R2
0

))]
, (1.1)

where ν is the fluid kinematic viscosity and Γ0 is the initial circulation of the vortex
ring, which is conserved. The vorticity distribution inside this ring corresponds to the
Lamb–Oseen vortex filament (Lamb 1932). This formula is valid at the initial stage
of the vortex ring development.

The description of the final stage of the laminar viscous vortex ring decay can
be based on Phillips’s (1956) self-similar solution for vorticity distribution and the
corresponding stream function. In this case Rott & Cantwell (1993a) showed that in
the limit of large times the translational velocity of vortex rings can be described by
the following equation:

Vx =
M

4π2R3
0

[
7
√

πR3
0

30(2νt)3/2

]
, (1.2)

where M is the momentum of vorticity per unit density.
An approximate, linear first-order solution of the Navier–Stokes equation for the

axisymmetric geometry and arbitrary time was reported by Kaltaev (1982), Berezovski
& Kaplanski (1995) and Kaplanski & Rudi (1999). Based on this solution, Kaplanski
& Rudi (2005) derived an expression for the translational velocity of the vortex ring
for arbitrary times. In the limit of small and large times this expression reduces to
those described by (1.1) and (1.2) respectively (Kaplanski & Rudi 1999; Fukumoto
& Kaplanski 2008). For the initial stage of vortex ring development, its predictions
show good agreement with the results of numerical simulations reported by Stanaway
et al. (1988) for Reynolds numbers (defined by the ratio of the circulation to the
kinematic viscosity) up to 400 (Fukumoto & Kaplanski 2008). The effects of these
numbers upon the numerical results was shown to be minimal.
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The main limitation of the models mentioned above is that they are based upon
the assumption that the vortex ring radius R0 remains constant. Saffman (1970)
attempted to relax this assumption and, using simple dimensional analysis, derived
an alternative formula for Vx of the form

Vx =
M

k (R0 + k′νt)3/2
, (1.3)

where k and k′ are fitting constants. Weigand & Gharib (1997) have shown that an
appropriate choice of these constants leads to a close match to (1.3) with their original
experimental data and the results of rigorous numerical analysis by Stanaway et al.
(1988). Both experimental data reported by Weigand & Gharib (1997) and the model
by Kaplanski & Rudi (2005) predict the Gaussian distribution of the vorticity in the
vortex ring. Also, it was shown that the formulae obtained in the limit of small vortex
ring Reynolds numbers can be applicable for the description of vortex rings with
realistic values of these numbers (see Fukumoto & Kaplanski 2008).

In contrast to the aforementioned laminar vortex ring models, the theory of
turbulent vortex rings is far less developed. To the best of the authors’ knowledge,
the first attempt to investigate turbulent vortex ring flow structures was made by
Lugovtsov (1970) who based his analysis on the introduction of the time-dependent,
turbulent (eddy) viscosity

ν∗ ∝ ��′, (1.4)

where � is the diffusivity scale of the ring core (cf. Lavrentiev & Shabat 1973;
Kovasznay, Fujita & Lee 1974). In our paper we assume that � =

√
2νt in the case

of laminar vortex rings. This definition of � is different from the definitions used
by some other authors. For example, Saffman (1970) defined � =

√
4νt . Equation

(1.4) made it possible to describe vortex rings as self-similar structures. However,
the comparison of this model with experimental observations proved inconclusive
(Maxworthy 1972, 1974, 1977; Glezer & Coles 1990; Sazhin et al. 2001; Cantwell
2002). Using (1.4), Lugovtsov (1970, 1976) developed a turbulent vortex ring model
with turbulent viscosity ν∗ and � ∝ t1/4. Further support of this model was provided
by Sazhin et al. (2001) who applied it to modelling of turbulent vortex ring structures
observed in gasoline engines. At the same time the model suggested by Lugovtsov
(1970, 1976) was based upon a number of restrictive assumptions, the applicability of
which to realistic physical conditions was not evident. The link between this model
and the models described by Kaplanski & Rudi (1999, 2005) was not clear. The
integral properties of the turbulent vortex rings, such as circulation, kinetic energy
and translational velocity, were not derived. As a result, the applicability of the model
to realistic physical conditions was not at first evident. This was therefore the main
driving force behind this paper in which an attempt is made to generalize the laminar
and turbulent vortex ring models by assuming that � ∝ tb, where 1/4 � b � 1/2. This
model is expected to incorporate both the laminar and turbulent vortex ring models
described earlier for the limiting values of b.

The basic equations and approximations of the new model are described in § 2.
The analytical solutions of the equations, describing this model, are presented and
discussed in § 3. In § 4 the limiting cases of the solutions of these equations for long
and short times are discussed. The solutions are validated against experimental data,
available in the literature, where possible. The results are presented in § 5. The main
results of the paper are summarized in § 6.
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Figure 1. A schematic presentation of the vortex ring with � = atb .

2. Basic equations and approximations
The general vorticity equation for incompressible flows follows from the Navier–

Stokes equation and can be presented in the form (e.g. Panton 1996)

Dζ

Dt
= ζ · ∇v + ν∇2ζ, (2.1)

where ζ = ∇ × v is the vorticity, ν is the kinematic viscosity.
Assuming that the flow is axisymmetric, when the vector ζ has only one azimuthal

component ζ , (2.1) can be simplified to (Batchelor 1967)

∂ζ

∂t
+

∂(vxζ )

∂x
+

∂(vrζ )

∂r
= ν

[
∂2ζ

∂x2
+

∂2ζ

∂r2
+

1

r

∂ζ

∂r
− ζ

r2

]
, (2.2)

where the meaning of r and x axes is shown in figure 1.
The stream function Ψ is introduced as

vx =
1

r

∂Ψ

∂r
+ Vx, vr = −1

r

∂Ψ

∂x
, (2.3)

where Vx is the velocity of the centroid at r = 0 and

x = x0 =

∫ ∞
0

∫ ∞
−∞ 2πrxζ dx dr∫ ∞

0

∫ ∞
−∞ 2πrζ dx dr

,

Vx = dx0(t)/dt . From the definition of ζ follows the equation

∂2Ψ

∂x2
+

∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
= −rζ. (2.4)

Equations (2.2)–(2.4) describe any axisymmetric flow, including vortex rings. In
the latter case, physically meaningful solutions of these equations should satisfy the
following boundary conditions: both ζ and Ψ are equal to zero at r = 0 and approach
zero when

√
x2 + r2 → ∞.

Following Berezovski & Kaplanski (1995), we introduce the following dimensionless
variables and parameters:

σ =
r

�
, η =

x − x0(t)

�
, θ =

R0

�
, Φ =

Ψ

ζ0�3
, ω =

ζ

ζ0

, ζ0 = A t−λ,

where R0 is the free parameter of the model which is usually identified with the
initial radius of the vortex ring (the value of r at which the axial velocity in the
frame of reference moving with Vx reaches its local minimum at η = 0); the length �
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can be identified with the thickness of the vortex ring as shown in figure 1; and the
parameter A can be identified with the initial vorticity at an a priori chosen location.
As mentioned in § 1, in the case of a laminar vortex ring it was assumed that � =

√
2νt

(Berezovski & Kaplanski 1995). In our case, a more general assumption is made, such
that

� = atb. (2.5)

In the case in which a =
√

2ν and b = 1/2, the value of � defined by (2.5) reduces to
the one considered by Berezovski & Kaplanski (1995). In the case of b = 1/4 and the
long time limit, the model essentially reduces to the one described by Lugovtsov (1976)
for the turbulent rings. One can expect that for real-life vortex-ring-like structures,
the values of b lie in the range 1/4 � b � 1/2. Hence, the analysis of the model will
focus on this range of b.

Also, we will assume that ν is not constant but changes with time (although it
remains homogeneous in space). For this case we can formally replace ν in (2.2) with
an effective viscosity ν∗. It is expected that this generalization of the vortex ring model
can incorporate the effects of turbulence.

The assumption of spatially homogeneous but time-dependent effective viscosity ν∗
is similar to that made by Lugovtsov (1976) for turbulent viscosity. In practice this
viscosity is expected to decrease from its maximal value near the maximal vorticity
region to zero at long distances from the vortex ring. This effect, however, is not
important for the analysis of the vortex ring dynamics, since the most important
effect of viscosity comes from the region in which it is maximal (Lugovtsov 1976).

Remembering the definitions of the above-mentioned dimensionless variables and
parameters and � and replacing ν by ν∗ in (2.2), the equation can be rewritten in the
following form:

−b�2

ν∗t

[
λ

b
ω + θ

∂ω

∂θ
+ σ

∂ω

∂σ
+ η

∂ω

∂η

]
+ Re

[
− ∂

∂σ

[
ω

σ

∂Φ

∂η

]
+

∂

∂η

[
ω

σ

∂Φ

∂σ

]]

=
∂2ω

∂σ 2
+

∂2ω

∂η2
+

1

σ

∂ω

∂σ
− ω

σ 2
, (2.6)

where the vortex ring Reynolds number is defined as Re = ζ0�
2/ν∗.

It should be noted that Re introduced in our paper is time-dependent.
Further development of this model requires the specification of ν∗(t). Following

Lugovtsov (1976), one can make a formal dimensionally correct assumption that
ν∗ = ��′, where �′ = d�/dt (cf. § 1). Remembering (2.5), this assumption leads to the
following relation:

ν∗ = ��′ = a2bt2b−1. (2.7)

In most realistic physical conditions we expect that the viscosity does not increase
with time and that the thickness of the vortex ring does not decrease with time. This
imposes the following restriction on the values of b:

0 � b � 1/2. (2.8)

As shown later (see (3.3)), the vortex ring Reynolds number is conserved for b = 1/4,
decreases with time for 1/4 < b � 1/2 and increases with time for 0 � b < 1/4. The
latter process has no physical grounds, and the condition (2.8) is restricted to

1/4 � b � 1/2. (2.9)
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The values of b in the range (2.9) and a can be considered free parameters. Their
values will be estimated based upon the comparison of the predictions of the model
with experimental data.

Using (2.5) and (2.7), it can be shown that

b�2

ν∗t
= 1.

Using this result, one can see that for b = 1/2, (2.6) is identical to (8) of Kaplanski
& Rudi (1999) if one remembers that a2b = ν when a =

√
2ν.

To simplify (2.6) further, the term proportional to Re can be rewritten as

R ≡ Re

[
− ∂

∂σ

[
ω

σ

∂

∂η

]
+

∂

∂η

[
ω

σ

∂

∂σ

]]
Ψ =

Re

�2

[ω

σ
div (v) + v ∇ω

σ

]
. (2.10)

At the initial stage of vortex ring development, the core is thin; the streamlines
are practically circular; and fluid velocities are almost perpendicular to the gradient
of vorticity. This allows one to assume that the term proportional to v ∇(ω/σ ) is
small at this point. Since div (v) = 0 for incompressible flows, one can ignore the
contribution of R in (2.10) in this case. In the final stage of vortex ring development,
the contribution of this term can be ignored, as Re approaches zero. The estimate of
R in the intermediate stage is more difficult to determine. Assuming that the term
proportional to Re (R) is close to zero, (2.6) is simplified to

−λ

b
ω − θ

∂ω

∂θ
− σ

∂ω

∂σ
− η

∂ω

∂η
=

∂2ω

∂σ 2
+

∂2ω

∂η2
+

1

σ

∂ω

∂σ
− ω

σ 2
. (2.11)

The range of applicability of (2.11) will be investigated more rigorously later based
on the comparison of its predictions with available experimental data for non-zero
values of Re.

Although the values of ω predicted by (2.11) vary in time and space, the specific
momentum of the vortex ring defined by the expression

M = π

∫ ∞

0

∫ ∞

−∞
r2ζ dx dr (2.12)

is conserved even in the turbulent case (Lugovtsov 1976).

3. Analytical solutions
The linearized form of (2.2) (dimensional form of (2.11)) was solved subject to the

initial condition (Fukumoto & Kaplanski 2008)

ζ0 = Γ0 δ(x) δ(r − R0),

where Γ0 is the initial circulation. The dimensionless form of this solution for λ = 4b

can be presented as

ω =
σ

2
exp

[
−1

2
(σ 2 + η2 + θ2)

]
[I0(σ θ) − I2(σ θ)] , (3.1)

where I0 and I2 are modified Bessel functions.
Note that (3.1) coincides with the solution of the original system of equations

(2.2)–(2.4) subject to the same initial condition, valid for arbitrary Re, in the limit of
short and long times. This is an expected result, since for long times Re → 0, and
for short times the multiple of Re in (2.6) tends to zero, as follows from the earlier
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presented qualitative analysis. Note that in the limit of short times, (3.1) reduces to
the Oseen solution for the decaying line vortex (see Panton 1996).

From the conservation of M (see (2.12)) it follows that

ζ0 =
M

π
√

2π
a−4t−4b =

M

π
√

2π
a−4t−λ. (3.2)

This yields

Re =
ζ0�

2

ν∗
=

M

π
√

2πb
a−4t1−4b =

M

π
√

2πb
a−4t1−λ. (3.3)

As follows from (3.3), the Reynolds number is conserved for b = 1/4. This property of
Re has turned out to be convenient for the analysis of developed turbulent vortex ring
flows (Cantwell 2002). For 1/4 < b � 1/2 (cf. condition (2.9)) the Reynolds number
decreases with time following the power law. For 0 < b < 1/4, Re would increase
with time. This is not consistent with the physical background of the phenomenon.

Although solution (3.1) was derived based upon the assumption that the nonlinear
terms proportional to Re in (2.6) are negligible, it is thought that it can be applied to
the analysis of real-life laminar and turbulent vortex ring flows (see § 2).

Remembering that

I1(x) =
x (I0(x) − I2(x))

2
, (3.4)

(3.1) can be rewritten as

ω̃ = exp

[
−1

2
(σ 2 + η2 + θ2)

]
I1(σ θ), (3.5)

where

ω̃ = ζ/ζ̃0,

ζ̃0 = ζ0/θ =
M

π
√

2πR0

a−3t−3b =
M

π
√

2πR0

a−3t−λ. (3.6)

Note that λ in this case is equal to 3b, due to the different choice of the normalizing
parameter ζ̃0. Equation (3.5) is identical to the one used by Kaplanski & Rudi (1999).

Following earlier approaches to the analysis of this problem (see Kaplanski & Rudi
1999, 2005), the focus is directed to (3.5) and (3.6). The tilde (̃ ) will be omitted to
simplify the notation. Note, dimensional forms of the solutions of (3.1) and (3.5) are
identical.

Once the value of vorticity has been found, the dimensionless stream function Φ

can be calculated in exactly the same manner as Kaplanski & Rudi (1999). This is
given by the following equation, which follows from (2.4):

Φ =
Mσ

4πR0ζ0�3

∫ ∞

0

F (μ, η)J1(θμ) J1(σμ) dμ =
σ

√
2π

4

∫ ∞

0

F (μ, η)J1(θμ) J1(σμ) dμ,

(3.7)

where

F (μ, η) = exp(ημ)erfc

(
μ + η√

2

)
+ exp(−ημ)erfc

(
μ − η√

2

)
,

erfc(x) =
2√
π

∫ ∞

x

exp(−t2) dt = 1 − erf(x) = 1 − 2√
π

∫ x

0

exp(−t2) dt

and J0 and J1 are Bessel functions; when deriving (3.7), (3.5) was taken into account.
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Once the value of Φ has been found, the components of velocity can be calculated
from (2.3). At this stage, the dimensionless velocities need to be defined. Following
Saffman (1970), our analysis is based upon the following normalizations: ux ≡
(vx − Vx)/vn and ur ≡ vr/vn, where

vn =
M

4 π2 R3
0

=
Γ0

4 π R0

;

Γ0 = M/(π R2
0) is the initial circulation of the vortex ring (Kaplanski & Rudi 2005).

Remembering this definition of vn and (2.3) and (3.7), the following expressions have
been obtained:

ux = π θ2

∫ ∞

0

μF (μ, η)J1(θμ) J0(σμ) dμ, (3.8)

ur = −π θ2

∫ ∞

0

μF̃ (μ, η)J1(θμ) J1(σμ) dμ, (3.9)

where

F̃ (μ, η) = exp(ημ)erfc

(
μ + η√

2

)
− exp(−ημ)erfc

(
μ − η√

2

)
.

Once the values of the vorticity and stream function for the vortex ring have been
obtained, then the dimensional energy E of the vortex ring can be calculated using
the following equation (Batchelor 1967):

E = π ρ

∫ ∞

0

dr

∫ +∞

−∞
ζΨ dx. (3.10)

As in the case of velocities, there are several ways to normalize E. In our analysis,
following Saffman (1992), E will be normalized by E0 = ρΓ 2

0 R0/2 = ρM2/(2π2R3
0).

Using (2.4), (3.5) and (3.10), we obtain, following the approach developed by
Kaplanski & Rudi (2005),

Ẽ =
E

E0

=

√
πθ3

12
2F2

[
3

2
,
3

2
;
5

2
, 3; −θ2

]
, (3.11)

where

2F2 [a1, a2; b1, b2; x] =

∞∑
k=0

(a1)k (a2)k xk

(b1)k (b2)k k!
(3.12)

is the generalized hypergeometric function with the coefficients defined as

(α)0 = 1; (α)1 = α; (α)k = α (α + 1) . . . (α + k − 1) (k � 2).

The plot of Ẽ versus θ as predicted by (3.11) is shown in figure 2. As follows from this
figure, Ẽ monotonically increases with increasing θ , which indicates the dissipation
of vortex ring energy with time. In the same figure, the plots obtained under the
assumptions of small and large θ are shown. These will be discussed later in § 5.

The form of (3.11) is exactly the same as in the case of conventional laminar
vortex rings. However, the explicit time dependence of Ẽ predicted by this equation is
obviously different from that predicted by the conventional model due to the different
functions �(t). To illustrate this effect, let us assume that at a certain moment in time,
t0, θ(t0) ≡ θ0 ≡ R0/(a tb

0 ) = 1. Hence, at an arbitrary time, t , θ = θ0(t/t0)
−b = t̃−b,

where t̃ = t/t0. The plots of Ẽ versus t̃ for b = 1/2 and 1/4 in the range 0 � t̃ � 5 are
shown in figure 3. As can be seen from figure 3, the rate of energy decrease appears
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(3.11)

(4.18) (θ >> 1)

0 2 4 6 8 10

1

2

E
~

θ

(4.5) (θ << 1)

Figure 2. The plots of Ẽ versus θ as predicted by (3.11) (arbitrary θ ), (4.5) (θ � 1) and
(4.18) (θ � 1).

b = 1/2

b = 1/4

0 1 2 3 4 5

t~

0.1

0.2

0.3

E
~

Figure 3. The plots of Ẽ versus t̃ = t/t0 as predicted by (3.11) for b = 1/2 and 1/4.

to be rather sensitive to the value of b. For b = 1/2 (laminar case) this rate is the
maximal one, while for b = 1/4 this rate is the minimal one in the vicinity of t̃ = 1.
At t̃ = 1 the plots for all b coincide as expected.

Although the energy is an important parameter for vortex ring characteristics,
it is difficult to measure it in practical applications. A more practically important
characteristic of vortex rings is the translational velocity, introduced earlier (see (2.3)).
Following Saffman (1970), this velocity is described in terms of the velocity of the
vortex ring centroid Vx , calculated based upon the following general equation (Lamb
1932; Helmholtz 1858):

Vx =

∫ ∞
0

∫ ∞
−∞ (Ψ − 6x r vr ) ζ dx dr∫ ∞

0

∫ ∞
−∞ r2ζ dx dr

. (3.13)

As in the case of velocities ux and ur , this velocity will be normalized by vn.
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(3.14)

(4.20) (θ >> 1)
(4.6) (θ << 1)

0 2 4 6 8 10

1

2

3

4

5

Ux

θ

Figure 4. The plots of Ux versus θ as predicted by (3.14) (arbitrary θ ), (4.6) (θ � 1) and
(4.20) (θ � 1).

Using (2.4), (3.5) and (3.13), we obtain, following the approach developed by
Kaplanski & Rudi (2005)

Ux =
Vx

vn

=
√

πθ

{
3 exp

(
−θ2

2

)
I1

(
θ2

2

)
+

θ2

12
2F2

[
3

2
,
3

2
;
5

2
, 3; −θ2

]

−3θ2

5
2F2

[
3

2
,
5

2
; 2,

7

2
; −θ2

]}
, (3.14)

where the generalized hypergeometric function 2F2 [a1, a2; b1, b2; x] was defined earlier
(see (3.12)).

The plot of Ux versus θ as predicted by (3.14) is shown in figure 4. As follows from
this figure, Ux monotonically increases with increasing θ , as in the case of the vortex
ring energy. In the same figure, the plots obtained for the assumptions of small and
large θ are shown. These will be discussed later in § 4.

As in the case of vortex ring energy, the form of (3.14) is exactly the same as for the
case of conventional laminar vortex rings. However, the explicit time dependence of
Ux predicted by this equation differs from that predicted by the conventional model
due to the different functions �(t). As in the case of the vortex ring energy, we assume
that at a certain moment in time, t0, θ0 ≡ R0/(a tb

0 ) = 1. Hence, at an arbitrary t ,
θ = θ0(t/t0)

−b = t̃−b, where t̃ = t/t0. The plots of Ux versus t̃ for b = 1/4 and 1/2 in
the same range of θ as in figure 3 are shown in figure 5.

As can be seen from figure 5, the velocity Ux is a monotonically decreasing function
of time for all b, as in the case of the vortex ring energy. Also, similar to the vortex
ring energy, the velocity decreases with time at a greater rate for larger b when t̃ is
close to 1. As in the case of vortex ring energy, at t̃ = 1, the plots for all b coincide
as expected. The values of Ux increase with increasing b at t̃ < 1 and decrease with
increasing b at t̃ > 1. At t̃ > 5, Ux decreases slowly with increasing t̃ , remaining
positive, as in the case of Ẽ.

Note that velocity Ux coincides with the absolute velocity of the points at which
ux = ur = 0 (zero velocity in the moving frame of reference). Also, it was useful
to introduce an additional velocity which described the movement of the points of
maximal vorticity of vortex rings (Uωx). As follows from (3.5), the x coordinates of
these points correspond to η = ηmax = 0 or x = x0. The r coordinates of these points,
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Figure 5. The plots of Ux versus t̃ = t/t0 as predicted by (3.14) for b = 1/2 and 1/4.
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Figure 6. The plots of σmax (location of the point of maximal vorticity) and σx (location of
the point at which ux = ur = 0) versus θ .

σ = σmax, can be found from the condition dω/dσ = 0 which is translated into the
following condition: (

σ 2
max + 1

)
I1(σmax θ) = σmaxθI0(σmax θ). (3.15)

The plot of σmax versus θ in the range of θ between 0 and 10 is shown in figure 6.
In the same figure, the plot of σx (when ux changes sign) versus θ is shown. As
follows from this figure, both σmax and σx monotonically increase with increasing θ .
The fact that σmax is always less than σx indicates that the region of maximal vorticity
is always closer to the axis of the vortex ring than the region in which ux changes
sign.

For large θ , both plots approach the line σ = θ which corresponds to r = R0.
For θ → 0, σmax approaches 1 from above, whilst σx approaches 2 from above. The
limiting values of σmax will be discussed in § 4. There is no simple explanation of the
properties of σx , which were inferred from the numerical analysis of (3.8).
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Figure 7. The plots of rx/R0 (location of the point at which ux = ur = 0) versus t̃ = t/t0 for
b = 1/2 (curve 1) and b = 1/4 (curve 2); the plots rmax/R0 (location of the point of maximal
vorticity) versus t̃ = t/t0 for b = 1/2 (curve 3) and b = 1/4 (curve 4).

(3.16)

(4.22) (θ >> 1)
(4.8) (θ << 1)

(3.14)
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Figure 8. The plots of Ux versus θ as predicted by (3.14) (long dashed curve), Uωx versus θ
as predicted by (3.16) for arbitrary θ (solid curve), (4.8) for small θ (dashed–dotted curve) and
(4.22) for large θ (short dashed curve).

As in the case of figures 3 and 5, we assume that θ0 ≡ R0/(a tb
0 ) = 1 which implies

that θ = t̃−b. The plots of rmax/R0 = σmax/θ and rx/R0 = σx/θ versus t̃ for b = 1/2
and 1/4 in the range 0 � t̃ � 5 are shown in figure 7. As follows from this figure,
rmax is close to R0 for all b and t̃ � 1. For t̃ > 1, rmax increases with increasing t̃ and
increasing b. In agreement with figure 6, rx is always greater than rmax.

Remembering (3.8) we obtain the expression for the normalized axial velocity of
fluid in the region of maximal vorticity in the form

Uωx ≡ Vωx/vn = Ux + 2πθ2

∫ ∞

0

μ erfc

(
μ√
2

)
J1(θμ) J0(σmaxμ) dμ, (3.16)

where θ = θmax satisfies (3.15).
The plots of Uωx and Ux versus θ in the range of θ between 0 and 10 are shown in

figure 8. As can be seen from this figure, both Uωx and Ux increase with increasing θ;
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Figure 9. The plots of Uωx (predicted by (3.16); curves 1) and Ux (predicted by (3.14);
curves 2) versus t̃ for b = 1/2 (solid curves) and 1/4 (dashed curves).

Uωx is always substantially greater than Ux , especially at θ > 1. In the same figure,
the plots of Uωx and Ux versus θ obtained under the assumptions that θ � 1 and
θ � 1 are shown. These are discussed later in § 4.

As in the case of figures 3, 4 and 7, it is assumed that θ0 ≡ R0/(a tb
0 ) = 1 which

implies that θ = t̃−b. The plots of Uωx and Ux versus t̃ for b = 1/2 and 1/4 in the
range 0 � t̃ � 5 are shown in figure 9. Both Uωx and Ux decrease with increasing
time, the values of Uωx being always greater than the values of Ux , in agreement with
figure 8. At t̃ = 1, both Uωx and Ux do not depend on b as in the cases shown in
figures 3, 5 and 7.

From (3.9) it can be seen that the predicted radial component of velocity at the
points of maximal vorticity of vortex rings (η = 0) is equal to zero. This is an expected
result, as the streamlines at η = 0 are always perpendicular to plane η = 0. However,
this zero fluid velocity in the r direction by no means prohibits the movement of
the point corresponding to the maximal vorticity (ηmax, σmax) in this direction. The
dimensionless effective radial velocity of this point can be found from (3.15) such that

Ueff (r) =
1

vn

drmax

dt
, (3.17)

where rmax = �σmax.
Note that in contrast to the previously calculated velocities, the expression for Ueff(r)

contains an additional parameter M , via vn. This makes it difficult to compare directly
the values of Uωx predicted by (3.16) and the values of Ueff(r) predicted by (3.17).

As in the case of figures 3, 4, 7 and 9, it is assumed that θ(t0) = θ0 = 1. In this case,
θ = (t/t0)

−b = t̃−b. Also, we assume that vn = 1 m s−1 and a = 1 m s−b. The plots of
Ueff(r) versus t̃ are shown in figure 10. As can be seen from this figure, at short times
(t̃ < 1) the time dependence of Ueff(r) is complex and highly depends upon the value
of b. This will be discussed in more detail in § 4. However, at long times (starting
from approximately t̃ = 1) Ueff(r) is a very slowly decreasing function of time. The
values of Ueff(r) at these times decrease with decreasing b.

One of the important limitations of the model described so far is that it is based
upon the assumption that R0 = constant. The approach suggested by Saffman (1970)
and further developed by Weigand & Gharib (1997) for laminar vortex rings can be
used to generalize our model to the case of non-constant R0, which will be referred
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Figure 10. The plots of Ueff(r) versus t̃ predicted by (3.17) (arbitrary t̃; solid curves) and (4.9)
(large t̃; dashed curves) for b = 1/2 and 1/4 (numbers near the curves).

to as R. We start with the dimensionally correct equation

Vx =
M

k R3
, (3.18)

where k is a proportionality constant. The decay of circulation can be described by
the second dimensionally correct equation

d (Vx R)

dt
= −k′ ν∗ Vx

R
, (3.19)

where k′ is another proportionality constant. The viscosity ν∗ is defined by (2.7). In
contrast to the case considered by Saffman (1970) and Weigand & Gharib (1997),
ν∗ depends on time. Having substituted (2.7) into (3.19) and integrating the latter
equation from t = t0 = 0 to t , one obtains

R2 − R2
0 =

k′ a2

2
t2b. (3.20)

For b = 1/2 and a =
√

2ν, (3.20) reduces to the one derived by Saffman (1970) and
Weigand & Gharib (1997). Substituting (3.20) into (3.18) gives

Vx =
M

k
(
R2

0 + k′a2

2
t2b

)3/2
. (3.21)

For b = 1/2 and a =
√

2 ν, (3.20) and (3.21) reduce to the corresponding equations
derived by Saffman (1970) and Weigand & Gharib (1997). In the dimensionless form,
(3.21) can be rewritten as

Ux =
4π2

k
(
1 + k′

2θ2

)3/2
. (3.22)

The form of (3.22) depends neither upon a nor upon b. As in the previous cases, it
is assumed that θ(t0) = θ0 = 1. In this case, θ = t̃−b, and (3.22) can be rewritten as
follows:

Ux =
4π2

k
(
1 + k′ t̃2b

2

)3/2
. (3.23)

Equations (3.20)–(3.23) can be considered the generalization of the so-called Saffman’s
second formula (see (1.3)) for the vortex ring velocity for arbitrary a and b.
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Figure 11. The plots of Ux versus θ based on (3.14) (solid curve) and (3.23) (dashed curve)
for k = 10.153200 and k′ = 8.9090909.

The values of k and k′ could be obtained based upon the best fit with the
experimental data of Weigand & Gharib (1997). Alternatively they can be obtained
based on the minimal deviation of Ux predicted by (3.23) and (3.14) in the limit of
long t . As the criterion of this minimal deviation, one can use the coincidence of the
first two terms of the asymptotic expansions of these equations in the limit of long
times. This leads to the following values:

k =
1320

2401

√
11π3/2 ≈ 10.153200, k′ =

98

11
≈ 8.9090909.

The plots of Ux versus θ based on (3.14) and (3.23) for these values of k and k′

are shown in figure 11. A reasonable agreement between the values of Ux predicted
by these equations is observed over the whole range of θ . At θ < 2 these values
approximately coincide as expected.

Let us now introduce another dimensionless time defined as

t∗ =
a2t2b

32R2
0

=
1

32θ2
. (3.24)

In the laminar case, when a =
√

2ν and b = 1/2, t∗ reduces to the one introduced by
Weigand & Gharib (1997). Remembering (3.24), (3.22) can be rewritten as

Ux =
4π2

k (1 + 16k′t∗)3/2
. (3.25)

This equation will be investigated in § 5.

4. Limiting cases
In this section the limiting cases of the solutions presented in § 3, referring to long

and short times, will be discussed.
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4.1. Long times

In the long time limit θ � 1, (3.5) and (3.6) can be simplified to

ω =
σ θ

2
exp

[
−1

2
(σ 2 + η2)

]
, (4.1)

Φ =
σ

√
2πθ

16

∫ ∞

0

μF (μ, η)J1(σμ) dμ.

Unfortunately, the latter integral cannot be presented in an analytical form. An
alternative calculation of Φ can be based on substitution of the expression (4.1) into
(2.4). The solution of the latter equation gives (Phillips 1956)

Φ =
θ

√
π

2
√

2

σ 2

(σ 2 + η2)3/2

[
erf (s∗) − 2 s∗√

π
exp (−s2

∗ )

]
, (4.2)

where

s∗ =

√
σ 2 + η2

2
.

Note that although ω predicted by (4.1) depends upon θ , the corresponding formula
for the dimensional vorticity does not contain R0. This leads to a self-similar solution
when the vorticity depends upon only one parameter, the vortex ring momentum M

(cf. Lugovtsov 1970, 1976).
The combination of this equation and (2.3) leads to the following expressions for

the velocity components:

ux =

√
2π θ3

2 (σ 2 + η2)5/2
exp

(
−σ 2 + η2

2

) [
2
√

σ 2 + η2(σ 4 − 2η2 + σ 2(1 + η2))

−
√

2π exp

(
σ 2 + η2

2

)
(σ 2 − 2η2) erf

(√
σ 2 + η2

√
2

) ]
, (4.3)

ur = −
√

2π σηθ3

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 exp

(
− σ 2 + η2

2

)
(3 + σ 2 + η2)

(σ 2 + η2)2
−

3
√

2π erf

(√
σ 2 + η2

√
2

)
(σ 2 + η2)5/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(4.4)

Keeping only the zeroth term in series (3.12), (3.11) and (3.14) are simplified to

Ẽ =

√
π θ3

12
, (4.5)

Ux =
7

√
π θ3

30
. (4.6)

This dimensionless velocity corresponds to

Vx =
7

120 π
√

π

M

a3
t−3b ≈ 0.0105

M

a3
t−3b. (4.7)

The plot of Ẽ versus θ , based on (4.5), is shown in figure 2. As follows from this
figure, at θ < 1/2 the values of Ẽ predicted by (4.5) show very close agreement with
those predicted by (3.11).
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Figure 12. The plots of Uωx versus t̃ as predicted by the general equation (3.16) (solid curves)
and the simplified equation (4.8) (dashed curves) for b = 1/2 and 1/4 (numbers near the
curves).

The plot of Ux versus θ , based on (4.6), is shown in figure 4. As follows from this
figure, at θ < 1/2, the values of Ux predicted by (4.6) are again almost indistinguishable
from those predicted by (3.14), as in the case of the vortex ring energy.

For a =
√

2ν and b = 1/2, (4.7) is identical to the one obtained by Rott & Cantwell
(1993a) (see (1.2)). For b = 1/4 the time dependence of Vx is identical to the one
reported earlier by Lugovtsov (1976), Glezer & Coles (1990), Cantwell (2002) and
Afanasyev & Korabel (2004).

The location of the point of the maximal vorticity in the limit of small θ (ηmax =
0, σmax = 1) follows from (3.15) (the latter condition corresponds to r = �). In this
case, (3.16) is simplified to

Uωx =
7

√
π θ3

30
+ 2 π θ2

∫ ∞

0

μ erfc

(
μ√
2

)
J1(θμ) J0(μ) dμ. (4.8)

When deriving (4.8) it is important to note that in the limit θ � 1, Ux is given by
(4.6).

The plots of Uωx versus θ based on (4.8) are shown in figure 8. For θ < 1, the
values of Uωx predicted by (4.8) are very close to those predicted by (3.16), as in the
case of Ux (see figure 4).

As in the case of figures 3, 4, 7 and 9, it is assumed once again that θ0 ≡ R0/(a tb
0 ) = 1

which implies that θ = t̃−b. The plots of Uωx versus t̃ for b = 1/2 and 1/4, predicted
by (3.16) and (4.8) in the range 2 � t̃ � 5 are shown in figure 12. The values of Uωx

predicted by (3.16) and (4.8) are reasonably close for all b in the whole range of t̃ under
consideration, although the closeness of the curves deteriorates with decreasing b.

As already mentioned, in a long time limit (θ � 1), the solution of (3.15) can be
presented as σmax = 1 which corresponds to rmax = �. In this case, the dimensionless
effective radial velocity of this point can be found from (3.15) in the form

Ueff(r) =
1

vn

drmax

dt
=

1

vn

d�

dt
=

a b tb−1

vn

. (4.9)

Assuming that θ0 ≡ R0/(a tb
0 ) = 1, θ = t̃−b. The plots of Ueff(r) versus t̃ for b = 1/2

and 1/4, predicted by (4.9) (for vn = 1 m s−1 and a = 1 m s−b) are shown in figure 10,
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Figure 13. The plots of normalized ω versus r/R0 as predicted by (3.5) (dashed curves) and
(4.11) (solid curves) for θ = 5 and θ = 0.5 (numbers near the curves).

alongside the corresponding curves predicted by (3.17). As follows from this figure,
the values of Ueff(r) predicted by (3.17) and (4.9) are reasonably close for all b and
t̃ > 1.

Note that in the case of θ → 0 we have � � R0. In this case the vortex ring
looses its conventional torus form, and it might be ambiguous to call it a cohesive ring.

4.2. Short times

In a short time limit (θ � 1), (3.5) can be simplified to

ω =

√
1

2πσθ
exp

[
−1

2
((σ − θ)2 + η2)

](
1 − 3

8σθ
− . . .

)
. (4.10)

Having introduced a new dimensionless parameter s as the dimensionless distance
from the point (R0/�, x0/�) and assuming that |R0 − r | � R0, (4.10) can be further
simplified to (see Kaplanski & Rudi 1999)

ω =
1√
2πθ

exp

(
−1

2
s2

)(
1 + O

(
|R0 − r |

2 R0

))
. (4.11)

This equation is identical to the one reported earlier by Wang, Chu & Chien-Chang
(1997). It predicts the Gaussian distribution with respect to r/R0.

The plots of ω versus r/R0 predicted by (3.5) and (4.11) are compared in figure 13
for θ = 5 and θ = 0.5. These plots almost coincide for short times (θ = 5) but show
the greatest deviation for long times (θ = 0.5).

Assuming that η � 1, one obtains

erfc

(
μ − η√

2

)
→ 2,

erfc

(
μ + η√

2

)
→

√
2 exp

(
− (μ+η)2

2

)
(μ + η)

√
2

.

The latter relation means that erfc ((μ + η)/
√

2) approaches zero faster than exp(−μη)
for large η. A similar analysis can be performed for η � −1. Hence, (3.7) can be
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simplified to

Φ =
σ

√
2π

2

∫ ∞

0

exp(−μ|η|)J1(θμ) J1(σμ) dμ. (4.12)

This equation is similar to the one given by (Lamb 1932, (14), p. 239).
Using the same assumptions as during the derivation of (4.12), the following

equations for the normalized components of velocity are obtained:

ux = π θ2

∫ ∞

0

μ exp(−μ|η|)J1(θμ) J0(σμ) dμ, (4.13)

ur = −π θ2

∫ ∞

0

μ exp(−μ|η|)J1(θμ) J1(σμ) dμ. (4.14)

In the limit of large x, the following asymptotic representation of the generalized
hypergeometric function will be used (Mathematica 2007):

2F2 [a1, a2; b1, b2; x] =

[
exp(x) xa1+a2−b1−b2Γ (b1)Γ (b2)

Γ (a1) Γ (a2)
+

(−x)−a1Γ (a2 − a1) Γ (b1) Γ (b2)

Γ (a2) Γ (b1 − a1) Γ (b2 − a1)

+
(−x)−a2Γ (a1 − a2) Γ (b1) Γ (b2)

Γ (a1) Γ (b1 − a2) Γ (b2 − a2)

]
+ O

(
1

x

)
, (4.15)

when a1 �= a2, and

2F2 [a1, a1; b1, b2; x] =

[
exp(x) x2 a1−b1−b2Γ (b1)Γ (b2)

Γ 2(a1)

+
(−x)−a1Γ (b1) Γ (b2) [−2 γ + log(−x) − ψ(a1) − ψ(b1 − a1) − ψ(b2 − a1)]

Γ (a1) Γ (b1 − a1) Γ (b2 − a1)

]

+ O

(
1

x

)
, (4.16)

where γ ≈ 0.57721566 is the Euler constant; Γ (x) is the Gamma function; and ψ(x)
is the di-gamma function defined as

ψ(x) =
d log Γ (x)

d x
. (4.17)

Having substituted (4.16) into (3.11) we obtain

Ẽ = ln (θ) − γ /2 − ψ(3/2). (4.18)

When deriving (4.18) the contribution of the imaginary term in (4.16) is ignored,
and the expression for 2F2 is rewritten for the required values of parameters as

2F2

[
3

2
,
3

2
;
5

2
, 3; −θ2

]
=

12 θ−3

√
π

[
ln θ − γ

2
− ψ

(
3

2

)]
. (4.19)

Note than ψ(1) = γ .
Remembering that

γ

2
+ ψ(3/2) ≈ 1

2
+ 2.058 − ln 8,

Equation (4.18) is identical to the one derived by Saffman (1992).
The plot of Ẽ versus θ , based on (4.18), is shown in figure 2. As follows from

this figure, at θ > 5 the values of Ẽ predicted by (4.18) almost coincide with those
predicted by (3.11).
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Having substituted (4.15) and (4.16) into (3.14) one obtains

Ux = ln θ +
3 − γ

2
− ψ(3/2) + O

(
1

θ

)
. (4.20)

When deriving (4.20), (4.15) was rewritten for the required values of parameters as

2F2

[
3

2
,
5

2
;
5

2
, 3; −θ2

]
=

5 θ−3

2
√

π
, (4.21)

and it was taken into account that

3 exp

(
−θ2

2

)
I1

(
θ2

2

)
=

3√
π θ

.

In the case in which � =
√

2νt , (4.20) reduces to the one obtained by Saffman
(1970) (see (1.1)).

The plot of Ux versus θ , based on (4.20), is shown in figure 4. As follows from
this figure, at θ > 5 the values of Ux predicted by (4.20) show good agreement with
those predicted by (3.14); the difference between the values of Ux predicted by these
equations is clearly visible over the whole range of θ under consideration.

The location of the point of the maximal vorticity (ηmax = 0, σmax = θ) follows from
(3.15) (with the latter condition corresponding to r = R0). In this case, (3.16) is
simplified to

Uωx = ln θ +
3 − γ

2
− ψ(3/2) + 2 π θ2

∫ ∞

0

μ erfc

(
μ√
2

)
J1(θμ) J0(θμ) dμ. (4.22)

When deriving (4.22) it was considered that in the limit θ � 1, Ux is given by (4.20).
The plots of Uωx versus θ based on (4.22) are shown in figure 8. As follows from

this figure, for θ > 1 the values of Uωx predicted by (4.22) are reasonably close to the
ones predicted by (3.16), although the closeness of the corresponding curves is worse
than in the case of Ux (see figure 4).

As in the case of figures 3, 4, 7, 9 and 12, it is assumed that θ0 ≡ R0/(a tb
0 ) = 1

which implies that θ = t̃−b. The plots of Uωx versus t̃ for b = 1/2 and 1/4, predicted
by (3.16) and (4.22) for t̃ � 1 are shown in figure 14. The values of Uωx predicted
by (3.16) and (4.22) are reasonably close for all b for sufficiently small t̃ . Note that
the range of closeness of the curves shown in figure 14 is outside the range shown in
figure 8.

In a short time limit (θ � 1), (3.15) can be simplified to

(
σ 2

max + 1
) (

1 − 3

8σmaxθ

)
= σmaxθ

(
1 − 1

8σmaxθ

)
.

This is an algebraic equation with respect to θ . Its physically meaningful solution can
be presented as

θ = σmax +
3

4σmax

.

In the dimensional form this solution can be presented as

rmax = R0 − 3�2

4rmax

. (4.23)

This equation shows that for sufficiently small, but non-zero, t̃ , rmax < R0. In the limit
t̃ → 0, rmax = R0. These properties of rmax are consistent with the plots shown in
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Figure 14. The plots of Uωx versus t̃ as predicted by the general equation (3.16) (solid curves)
and the simplified equation (4.22) (dashed curves) for b = 1/2 and 1/4 (numbers near the
curves).

figure 7, although the resolution of the curves in the immediate vicinity of t̃ = 0 is
not sufficient to clearly demonstrate the convergence of rmax to R0.

Equation (4.23) can be considered a quadratic equation in rmax. Its solution in the
limit of short times can be presented as

rmax = R0

(
1 − 3�2

4R2
0

)
= R0

(
1 − 3a2t2b

4R2
0

)
. (4.24)

Having substituted this equation into (3.17) we obtain

Ueff(r) = − 3a2b

2R0vn

t2b−1. (4.25)

As follows from (4.25), for sufficiently small times, Ueff(r) is always negative. This
is consistent with our earlier observation that for sufficiently small, but non-zero,
t̃ , rmax <R0, while in the limit t̃ → 0, rmax = R0. For b = 1/2, Ueff(r) remains finite at
t̃ → 0, while for 1/4 < b < 1/2, Ueff(r) → −∞ at t → 0. These predictions of (4.25) are
consistent with the trends of the curves shown in figure 10 for small times.

5. Theory versus experiments
The results of experimental studies of vortex rings in various controlled and

uncontrolled conditions have been reported in numerous papers (e.g. Shariff &
Leonard 1992; Lim & Nickels 1995). In the case of classical vortex rings generated
in liquids (e.g. water) their basic properties have been explained in terms of the
conventional models of laminar rings (Saffman 1970; Saffman 1992; Rott & Cantwell
1993a,b; Wang et al. 1997; Fukumoto & Moffatt 2000). In what follows, some of the
theoretical results described so far are compared with published experimental data.

The values of Ux , predicted by (3.14) and (3.25) for b = 1/2, Saffman’s formula (1.1)
and the upper and lower bounds of the experimental results reported by Weigand &
Gharib (1997) are compared in figure 15. As shown by Weigand & Gharib (1997),
their experimental data in the range of Reynolds numbers between 830 and 1650 lie
between the lower and upper boundary curves described by (3.23) with (k = 14.5;
k′ = 10.6) and (k = 13.6; k′ = 7.5) respectively. The best curve fit for experimental
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(3.14)

Saffman's formula (1.1)

(3.25) with k = 10.15, k ′ = 8.9
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log (t∗)

1
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3
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Figure 15. The plots of Ux versus log t∗ = log[1/(32θ2)] based on (3.14) (thick solid curve),
(3.25) (dashed curve) for k = 10.153200 and k′ = 8.9090909 and (1.1) (dashed–dotted curve);
lower and upper bounds for experimental results by Weigand & Gharib (1997) correspond to
the lower and upper boundaries of the shaded area.

data was achieved for (k = 14.4; k′ = 7.8). As can be seen from figure 15, both plots
predicted by (3.14) and (3.25) for b = 1/2 are reasonably close to the experimental
results by Weigand & Gharib (1997) in the range 830 � Re � 1650. This was expected,
as the results presented by Weigand & Gharib (1997) refer to the laminar case. The
result predicted by (1.1) do not depend on a or b. At t∗ > 0.01 the plots based on
(3.14) and (3.25) are approximately coincident in agreement with figure 11.

The experimental data obtained by Weigand & Gharib (1997) refer to real-life
vortex rings, produced in the laboratory. At the initial time, these rings did not
have delta-function-like structures of the vorticity distribution, which was assumed
in solution (3.1). Hence, a noticeable deviation of the experimental plots from the
predictions of the model is observed at short times. Note that there is no contradiction
between this result and table 1 of Weigand & Gharib (1997), predicting an almost
linear increase in the vortex ring translational velocity with increasing Re. This is
related to the fact that the velocity in table 1 of Weigand & Gharib (1997) is
dimensional, while the velocity shown in figure 15 is dimensionless and proportional
to Vx/Γ0 ∼ Vx/Re.

Also, an attempt was made to compare the velocities predicted by (3.14) with
experimental data reported by Dabiri & Gharib (2004), who performed experimental
studies of isolated vortex rings in water in the range of Re between 2000 and 4000
based on the initial circulations (when vortex rings were first observed). As in the
previously described experiments by Weigand & Gharib (1997), the vortex rings were
generated by a piston motion, and they were observed to start approximately 2 s
after the piston was first set to motion. Two values of the ratio of L (stroke) to D

(diameter) were considered: 4 and 2. In the case of L/D = 4, the observed velocities
of the vortex rings were approximated as

Vx = 5 t−0.34, (5.1)

where Vx is in cm s−1 and t is in s. Normalizing Vx by Vx(tinit = 1 s) and t by tinit = 1 s,
(5.1) can be rewritten as

Ux =
Ux

Ux(tinit)
=

Vx

Vx(tinit)
=

(
t

tinit

)−0.34

= (t)−0.34. (5.2)
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Figure 16. The plots of Ux = Ux(t)/Ux(t = tinit = 1 s) versus t = t/tinit as predicted by
experimental results by Dabiri & Gharib (2004) for L/D = 4: Ux = (t)−0.34 (dashed curve)
and the model (3.14) for b = 1/4 (solid curves) and b = 1/2 (dashed–dotted curves). Thin solid
and dashed–dotted curves refer to θinit = 1 (upper curves) and θinit = 4 (lower curves). Thick
solid and dashed–dotted curves refer to θinit = 2.5.

The values of Ux versus t predicted by (5.2) are shown in figure 16 as a dashed
curve.

To compare the prediction of (5.2) with (3.14) the values of θinit = θ(tinit) and b

need to be specified. As follows from the analysis by Kaplanski & Rudi (2005), the
values of θinit predicted by the slug-flow model are controlled by L/D. As follows
from figure 2 of Kaplanski & Rudi (2005), for L/D = 4, θinit is expected to be in
the range from 4 to 1 (the thickest vortex ring, the shape of which can be clearly
identified). The model, described earlier in this section, is valid for 1/4 � b � 1/2.
The plots of Ux versus t , predicted by (3.14), for b = 1/4, 1/2 and θinit = 1, 4 and
2.5 (averaged between 1 and 4), are shown in figure 16. As follows from this figure, in
the case of b = 1/4 the predicted values of Ux are the closest to the experimentally
observed values of Ux when θinit = 2.5. When θinit = 1 the observed values of Ux are
expected to match the predicted ones for b between 1/4 and 1/2. There is no match
between the experimentally observed and the predicted values of Ux for θinit = 4. The
case for L/D = 4 is particularly important for our comparison, as in this case the
momentum of vorticity of the observed vortex rings was conserved in the experiment
described by Dabiri & Gharib (2004). The derivation of (3.14) was essentially based
upon the assumption that this momentum was conserved.

In the case of L/D = 2, the values of θinit are expected to be in the range of 1
and 26 with the average value equal to 13.5. The agreement between theoretical and
experimental results turned out to be the best for b = 1/4 and θinit = 13.5 (the plots
are not shown).

In figure 17 the results predicted by (5.2), (3.14) and (3.25) are compared for
θinit = 2.5. The results predicted by (3.14) are shown for b = 1/4, while the results
predicted by (3.25) are shown for b = 1/4 and b = 1/2. As can be seen from this figure,
the results predicted by both (3.14) and (3.25) for b = 1/4 are reasonably close to the
results predicted by (5.2). At the same time the results predicted by (3.25) for b = 1/2
are noticeably different from those predicted by (5.2), in agreement with figure 16.
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Figure 17. The plots of Ux = Ux(t)/Ux(t = tinit = 1 s) versus t = t/tinit as predicted by experi-
mental results by Dabiri & Gharib (2004) for L/D = 4: Ux = (t)−0.34 (5.2) and the model
((3.15) for b = 1/4 and (3.26) for b = 1/4 and b = 1/2). All theoretical curves refer to
θinit = 2.5.

Note that the experimental results predicted by Maxworthy (1972) in the same
range of Re were approximated as (see Dabiri & Gharib 2004)

Ux = (t)−1. (5.3)

The reliability of these results was questioned by Dabiri & Gharib (2004). They were
not used in our analysis.

6. Conclusions
A conventional laminar vortex ring model has been generalized by assuming that

the time dependence of the vortex ring thickness � is given by the relation � = a tb,
where a is a positive number and 1/4 � b � 1/2. In the case in which a =

√
2ν,

where ν is the laminar kinematic viscosity, and b = 1/2, the predictions of the
generalized model are identical with the predictions of the conventional model. The
time-dependent effective viscosity ν∗ is presented as � �′. In the case in which a =

√
2ν

and b = 1/2, ν∗ = ν. This generalization was performed in the case of both fixed
vortex ring radius R0 and increasing vortex ring radius. In the latter case, the so-
called second Saffman’s formula (see Saffman 1970) has been generalized. The general
solutions for vortex ring vorticity, stream function, energy and velocities have been
shown to reduce to the previously reported solutions in the cases of long and short
times. It has been shown that both vortex ring energy and translational velocity
depend strongly on the value of the parameter b.

The time evolutions of the locations of the region of maximal vorticity and the
region in which the velocity of fluid is equal to zero, in the frame of reference moving
with the vortex ring centroid, are found. It is pointed out that the location of both
regions depends on b, the second region being always further away from the vortex
axis than the first one. It is shown that the axial velocities of the fluid in the first
region are always larger than the axial velocities in the second region. Both velocities
depend strongly on b. Although the radial component of velocity in both these regions
is equal to zero, the location of both these regions changes with time. This leads to
the effective radial velocity component, and the latter depends on b.
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Theoretical results have been validated against experimental data reported by
Weigand & Gharib (1997) and Dabiri & Gharib (2004) in a wide range of Reynolds
numbers (based on local circulation).

The authors are grateful to the EPSRC (grant EP/E047912/1) (UK) and the
Estonian Science Foundation (grant ETF 6832) for their financial support of this
project.
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